191
RECIMUNDO VOL. 8 N°1 (2024)
Ellahi, N., Ur Rehman, J., Sulehri, A., Ahmad, M. A., y
Qureshi, T. (2021). Investigating the Impact of CO-
VID 19 Outbreak on Stock Market Returns: Eviden-
ce from Pakistan. International Journal of Innova-
tion, Creativity and Change. Www.Ijicc.Net, 15(5).
https://ir.iba.edu.pk/esdcber/2021/day2/13/
Hardman, S., Shiu, E., y Steinberger-Wilckens, R.
(2015). Changing the fate of fuel cell vehicles: Can
lessons be learnt from Tesla Motors? International
Journal of Hydrogen Energy, 40(4). https://doi.or-
g/10.1016/j.ijhydene.2014.11.149
Herwartz, H. (2017). Stock return prediction under
GARCH — An empirical assessment. Internatio-
nal Journal of Forecasting, 33(3). https://doi.or-
g/10.1016/j.ijforecast.2017.01.002
Kim, H. (2020). Analysis of How Tesla Creates Core
Innovation Capability. International Journal of
Business and Management, 15(6). https://doi.
org/10.5539/ijbm.v15n6p42
Koopman, S. J., Jungbacker, B., y Hol, E. (2005). Fo-
recasting daily variability of the S&P 100 stock index
using historical, realised and implied volatility me-
asurements. Journal of Empirical Finance, 12(3).
https://doi.org/10.1016/j.jempfin.2004.04.009
Krysiak, Zbigniew. (2015). Financial engineering in
the project development: Modelling decisions.
Warsaw School of Economics. https://books.goo-
gle.com/books/about/Financial_Engineering_in_
the_Project_Dev.html?hl=es&id=SfRjswEACAAJ
Kuester, K., Mittnik, S., y Paolella, M. S. (2006). Va-
lue-at-risk prediction: A comparison of alternative
strategies. Journal of Financial Econometrics, 4(1).
https://doi.org/10.1093/jjfinec/nbj002
Lee, Y. C., Wu, W. L., y Lee, C. K. (2021). How CO-
VID-19 Triggers Our Herding Behavior? Risk
Perception, State Anxiety, and Trust. Frontiers
in Public Health, 9. https://doi.org/10.3389/fpu-
bh.2021.587439
Liu, S. (2021). Competition and Valuation: A Case
Study of Tesla Motors. IOP Conference Series: Ear-
th and Environmental Science, 692(2). https://doi.
org/10.1088/1755-1315/692/2/022103
Mulyanah, S. N., y Asianto, A. (2020). Value at Risk
Analysis towards Automotive Sub Sector Shares
and its Components at Indonesia Stock Exchange.
International Journal of Innovative Science and Re-
search Technology, 5(8). https://doi.org/10.38124/
ijisrt20aug429
Orhan, M., y Köksal, B. (2012). A comparison of
GARCH models for VaR estimation. Expert Systems
with Applications, 39(3). https://doi.org/10.1016/j.
eswa.2011.09.048
Phadnis, C., Joshi, S., y Sharma, D. (2021). A study
of the effect of black swan events on stock mar-
kets – and developing a model for predicting and
responding to them. Australasian Accounting, Bu-
siness and Finance Journal, 15(1 Special Issue).
https://doi.org/10.14453/aabfj.v15i1.8
Philippe Jorion. (2007). Value at Risk – The New Ben-
chmark for Managing Financial Risk. In Financial
Markets and Portfolio Management (3ra ed.). Mc-
Graw-Hill. https://isbnsearch.org/isbn/0071464956
Serrano-Bautista, R., y Mata-Mata, L. (2018). Estima-
ción del VaR mediante un modelo condicional mul-
tivariado bajo la hipótesis α-estable Sub-Gaussia-
na. Ensayos Revista de Economía, 37(1). https://
doi.org/10.29105/ensayos37.1-2
Sun, S., Zhao, H., Li, X., y Zheng, K. (2016). Nt-garch-
var model on risk measurement. Conference Pro-
ceedings of the 4th International Symposium on
Project Management, ISPM 2016.
Tanveer, Z. (2021). Event analysis of the COVID-19:
Evidence from the stock markets of twenty highly
infected countries. Jurnal Ekonomi Malaysia, 55(1).
https://doi.org/10.17576/JEM-2021-5501-1
Yarovaya, L., Matkovskyy, R., y Jalan, A. (2021). The
effects of a “black swan” event (COVID-19) on her-
ding behavior in cryptocurrency markets. Journal of
International Financial Markets, Institutions and Mo-
ney, 75. https://doi.org/10.1016/j.intfin.2021.101321
Aven, T. (2013). On the meaning of a black swan in
a risk context. Safety Science, 57. https://doi.or-
g/10.1016/j.ssci.2013.01.016
Burns, P. J. (2005). The Quality of Value at Risk via
Univariate GARCH. SSRN Electronic Journal. ht-
tps://doi.org/10.2139/ssrn.443540
Chinhamu, K., Chifurira, R., y Ranganai, E. (2022).
Value-at-Risk Estimation of Precious Metal Re-
turns using Long Memory GARCH Models with
Heavy-Tailed Distribution. Journal of Statistics
Applications and Probability, 11(1). https://doi.
org/10.18576/jsap/110107
Degiannakis, S., y Potamia, A. (2017). Multi-
ple-days-ahead value-at-risk and expected short-
fall forecasting for stock indices, commodities and
exchange rates: Inter-day versus intra-day data.
International Review of Financial Analysis, 49. ht-
tps://doi.org/10.1016/j.irfa.2016.10.008
Ellahi, N., Ur Rehman, J., Sulehri, A., Ahmad, M. A., y
Qureshi, T. (2021). Investigating the Impact of CO-
VID 19 Outbreak on Stock Market Returns: Eviden-
ce from Pakistan. International Journal of Innova-
tion, Creativity and Change. Www.Ijicc.Net, 15(5).
https://ir.iba.edu.pk/esdcber/2021/day2/13/
VALUE AT RISK CON VOLATILIDAD MODELADA POR GARCH: EVIDENCIA DEL SECTOR AUTOMOVILÍSTICO
DURANTE EL 2020