22
RECIMUNDO VOL. 8 N°2 (2024)
Karim, A., Azam, S., Shanmugam, B., & Kannoor-
patti, K. (2020). Efficient Clustering of Emails into
Spam and Ham: The Foundational Study of a Com-
prehensive Unsupervised Framework. IEEE Ac-
cess, 8, 154759–154788. https://doi.org/10.1109/
ACCESS.2020.3017082
Karim, A., Azam, S., Shanmugam, B., & Kannoor-
patti, K. (2021). An Unsupervised Approach for
Content-Based Clustering of Emails into Spam
and Ham through Multiangular Feature Formula-
tion. IEEE Access, 9, 135186–135209. https://doi.
org/10.1109/ACCESS.2021.3116128
Manaa, M. E., Obaid, A. J., & Dosh, M. H. (2021).
Unsupervised Approach for Email Spam Filtering
using Data Mining. EAI Endorsed Transactions on
Energy Web, 8(36), 1–6. https://doi.org/10.4108/
eai.9-3-2021.168962
Mohammad, R. M. A. (2020). An improved multi-class
classification algorithm based on association clas-
sification approach and its application to spam
emails. IAENG International Journal of Computer
Science, 47(2), 187–198.
Mohammed, M. A., Ibrahim, D. A., & Salman, A. O.
(2021). Adaptive intelligent learning approach ba-
sed on visual anti-spam email model for multi-natu-
ral language. Journal of Intelligent Systems, 30(1),
774–792. https://doi.org/10.1515/jisys-2021-0045
Moutafis, I., Andreatos, A., & Stefaneas, P. (2023).
Spam email detection using machine learning te-
chniques. European Conference on Information
Warfare and Security, ECCWS, 2023-June, 303–
310. https://doi.org/10.34190/eccws.22.1.1208
Mu, R. (2022). Spam Identification in Cloud Compu-
ting Based on Text Filtering System. Wireless Com-
munications and Mobile Computing, 2022. https://
doi.org/10.1155/2022/2309934
Panwar, M., Jogi, J. R., Mankar, M. V., Alhassan, M.,
& Kulkarni, S. (2022). Detection of Spam Email.
American Journal of Innovation in Science and
Engineering, 1(1), 18–21. https://doi.org/10.54536/
ajise.v1i1.996
Zhang, H., Cheng, N., Zhang, Y., & Li, Z. (2021). La-
bel flipping attacks against Naive Bayes on spam
filtering systems. Applied Intelligence, 51(7),
4503–4514. https://doi.org/10.1007/s10489-020-
02086-4
Dada, E. G., Bassi, J. S., Chiroma, H., Abdulhamid,
S. M., Adetunmbi, A. O., & Ajibuwa, O. E. (2019).
Machine learning for email spam filtering: review,
approaches and open research problems. Heliyon,
5(6). https://doi.org/10.1016/j.heliyon.2019.e01802
Karim, A., Azam, S., Shanmugam, B., & Kannoor-
patti, K. (2020). Efficient Clustering of Emails into
Spam and Ham: The Foundational Study of a Com-
prehensive Unsupervised Framework. IEEE Ac-
cess, 8, 154759–154788. https://doi.org/10.1109/
ACCESS.2020.3017082
Karim, A., Azam, S., Shanmugam, B., & Kannoor-
patti, K. (2021). An Unsupervised Approach for
Content-Based Clustering of Emails into Spam
and Ham through Multiangular Feature Formula-
tion. IEEE Access, 9, 135186–135209. https://doi.
org/10.1109/ACCESS.2021.3116128
Manaa, M. E., Obaid, A. J., & Dosh, M. H. (2021).
Unsupervised Approach for Email Spam Filtering
using Data Mining. EAI Endorsed Transactions on
Energy Web, 8(36), 1–6. https://doi.org/10.4108/
eai.9-3-2021.168962
Mohammad, R. M. A. (2020). An improved multi-class
classification algorithm based on association clas-
sification approach and its application to spam
emails. IAENG International Journal of Computer
Science, 47(2), 187–198.
Mohammed, M. A., Ibrahim, D. A., & Salman, A. O.
(2021). Adaptive intelligent learning approach ba-
sed on visual anti-spam email model for multi-natu-
ral language. Journal of Intelligent Systems, 30(1),
774–792. https://doi.org/10.1515/jisys-2021-0045
Moutafis, I., Andreatos, A., & Stefaneas, P. (2023).
Spam email detection using machine learning te-
chniques. European Conference on Information
Warfare and Security, ECCWS, 2023-June, 303–
310. https://doi.org/10.34190/eccws.22.1.1208
Mu, R. (2022). Spam Identification in Cloud Compu-
ting Based on Text Filtering System. Wireless Com-
munications and Mobile Computing, 2022. https://
doi.org/10.1155/2022/2309934
Panwar, M., Jogi, J. R., Mankar, M. V., Alhassan, M.,
& Kulkarni, S. (2022). Detection of Spam Email.
American Journal of Innovation in Science and
Engineering, 1(1), 18–21. https://doi.org/10.54536/
ajise.v1i1.996
Zhang, H., Cheng, N., Zhang, Y., & Li, Z. (2021). La-
bel flipping attacks against Naive Bayes on spam
filtering systems. Applied Intelligence, 51(7),
4503–4514. https://doi.org/10.1007/s10489-020-
02086-4
TRUJILLO COLOMA, M. J., PILAY SALVATIERRA, L. G., VARGAS BUSTAMANTE, M. ÁNGEL, & CRUZ ARÉVALO, G. A.