Cirugía digitalmente guiada: avances y perspectivas sobre tecnología digital 3D en periodoncia e implantología

Palabras clave: Diseño 3D, odontología 3D, impresión 3D, cirugía periodontal, cirugía implantológica

Resumen

Antecedentes: Los procedimientos quirúrgicos regenerativos en periodoncia e implantes son realizados de manera analógica con el uso de imágenes en dos dimensiones. El uso de modelos y reconstrucciones 3D así como la impresión 3D, se encuentra en desarrollo para el mejoramiento de las técnicas regenerativas quirúrgicas. Objetivo: Identificar alternativas tecnológicas 3D que pueden ser útiles en la planificación y práctica de cirugía regenerativa en periodoncia e implantología, mediante una revisión de literatura. Metodología: Primero la búsqueda de la información se realizó en bases de datos (PubMed, Science Direct y Google Scholar), subsecuente la lectura y análisis de artículos de investigación, para pasar a un proceso de selección estricto. Resultados: Existe evidencia del uso de tecnología 3D para impresión de dispositivos que ayudan a mejorar la regeneración de tejidos periodontales, así como, la preservación de rebordes alveolares. Se sustenta en la aplicación de diferentes componentes altamente compatibles con células vivas, y se predice su futuro uso en cirugía regenerativa en las áreas de periodoncia e implantología.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

César Darío Rodríguez Manjarrez
Posgradista de la Facultad de Odontología de la Universidad Central del Ecuador; Odontólogo; Quito, Ecuador
Xavier Guillermo Salazar Martínez
Especialista en Periodoncia y Medicina Oral; Doctor en Odontología; Docente de la Facultad de Odontología de la Universidad Central del Ecuador; Quito, Ecuador

Citas

Omami G, Al Yafi F. Should Cone Beam Computed Tomography Be Routinely Obtained in Implant Planning? Dent Clin North Am. 2019;63(3):363–79.

Rodriguez y Baena R, Beltrami R, Tagliabo A, Rizzo S, Lupi SM. Differences between panoramic and Cone Beam-CT in the surgical evaluation of lower third molars. J Clin Exp Dent. 2017;9(2):e259–65.

Konrad J, Wang M, Ishwar P. 2D-to-3D image conversion by learning depth from examples. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work. 2012;16–22.

Bernard L, Vercruyssen M, Duyck J, Jacobs R, Teughels W, Quirynen M. A randomized controlled clinical trial comparing guided with nonguided implant placement: A 3-year follow-up of implant-centered outcomes. J Prosthet Dent [Internet]. 2019;121(6):904–10. Available from: https://doi.org/10.1016/j.prosdent.2018.09.004

Blatz MB, Conejo J. The Current State of Chairside Digital Dentistry and Materials. Dent Clin North Am [Internet]. 2019;63(2):175–97. Available from: https://doi.org/10.1016/j.cden.2018.11.002

Zhou W, Liu Z. CLINICAL FACTORS AFFECTING THE ACCURACY OF GUIDED IMPLANT SURGERY — A SYSTEMATIC REVIEW AND META-ANALYSIS. J Evid Based Dent Pract [Internet]. 2018;18(1):28–40. Available from: https://doi.org/10.1016/j.jebdp.2017.07.007

Katkar RA, Taft RM, Grant GT. 3D Volume Rendering and 3D Printing (Additive Manufacturing). Dent Clin North Am [Internet]. 2018;62(3):393–402. Available from: https://doi.org/10.1016/j.cden.2018.03.003

Al Yafi F, Camenisch B, Al-Sabbagh M. Is Digital Guided Implant Surgery Accurate and Reliable? Dent Clin North Am [Internet]. 2019;63(3):381–97. Available from: https://doi.org/10.1016/j.cden.2019.02.006

Borges GJ, Ruiz LFN, Alencar AHG De, Porto OCL, Estrela C. Cone-beam computed tomography as a diagnostic method for determination of gingival thickness and distance between gingival margin and bone crest. Sci World J. 2015;2015.

Greenberg AM. Digital Technologies for Dental Implant Treatment Planning and Guided Surgery. Oral Maxillofac Surg Clin North Am [Internet]. 2015;27(2):319–40. Available from: http://dx.doi.org/10.1016/j.coms.2015.01.010

Zeller S, Guichet D, Kontogiorgos E, Nagy WW. Accuracy of three digital workflows for implant abutment and crown fabrication using a digital measuring technique. J Prosthet Dent [Internet]. 2019;121(2):276–84. Available from: https://doi.org/10.1016/j.prosdent.2018.04.026

Guichet DL. Digital Workflows in the Management of the Esthetically Discriminating Patient. Dent Clin North Am [Internet]. 2019;63(2):331–44. Available from: https://doi.org/10.1016/j.cden.2018.11.011

Baethge C, Goldbeck-Wood S, Mertens S. SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019;4(1):2–8.

Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng - Part A. 2014;20(7–8):1342–51.

Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, et al. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo. Adv Healthc Mater. 2016;5(6):676–87.

Tian Y, Liu M, Liu Y, Shi C, Wang Y, Liu T, et al. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. J Biomed Mater Res - Part A. 2021;109(7):1209–19.

Han J, Jeong W, Kim MK, Nam SH, Park EK, Kang HW. Demineralized dentin matrix particle-based bio-ink for patient-specific shaped 3d dental tissue regeneration. Polymers (Basel). 2021;13(8).

Lee U-L, Yun S, Cao H-L, Ahn G, Shim J-H, Woo S-H, et al. Ligament Regeneration. Cells. 2021;10(1337):1–12.

Goh BT, Teh LY, Tan DBP, Zhang Z, Teoh SH. Novel 3D polycaprolactone scaffold for ridge preservation - a pilot randomised controlled clinical trial. Clin Oral Implants Res. 2015;26(3):271–7.

Shim JH, Won JY, Sung SJ, Lim DH, Yun WS, Jeon YC, et al. Comparative efficacies of a 3D-printed PCL/PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dogs. Polymers (Basel). 2015;7(10):2061–77.

Park SA, Lee HJ, Kim KS, Lee SJ, Lee JT, Kim SY, et al. In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials (Basel). 2018;11(2).

Chiu YC, Shie MY, Lin YH, Lee AKX, Chen YW. Effect of strontium substitution on the physicochemical properties and bone regeneration potential of 3D printed calcium silicate scaffolds. Int J Mol Sci. 2019;20(11).

Chang PC, Luo HT, Lin ZJ, Tai WC, Chang CH, Chang YC, et al. Preclinical evaluation of a 3D-printed hydroxyapatite/poly(lactic-co-glycolic acid) scaffold for ridge augmentation. J Formos Med Assoc [Internet]. 2021;120(4):1100–7. Available from: https://doi.org/10.1016/j.jfma.2020.10.022

Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK, et al. Bone regeneration capability of 3D printed ceramic scaffolds. Int J Mol Sci. 2020;21(14):1–13.

Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE, et al. 3D-printed ceramic bone scaffolds with variable pore architectures. Int J Mol Sci. 2020;21(18):1–12.

Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C [Internet]. 2017;78:1246–62. Available from: http://dx.doi.org/10.1016/j.msec.2017.05.017

Nesic D, Durual S, Marger L, Mekki M, Sailer I, Scherrer SS. Could 3D printing be the future for oral soft tissue regeneration? Bioprinting. 2020;20.

Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Schnettler R, Barbeck M. Additive manufacturing for guided bone regeneration: A perspective for alveolar ridge augmentation. Vol. 19, International Journal of Molecular Sciences. 2018. 1–35 p.

Publicado
2021-08-30
Cómo citar
Rodríguez Manjarrez, C. D., & Salazar Martínez, X. G. (2021). Cirugía digitalmente guiada: avances y perspectivas sobre tecnología digital 3D en periodoncia e implantología. RECIMUNDO, 5(3), 346-358. https://doi.org/10.26820/recimundo/5.(3).sep.2021.346-358
Sección
Artículos de Revisión