Efectos de las vacunas contra el COVID-19 en el sistema humanitario. Una revisión sistemática

Autores/as

DOI:

https://doi.org/10.26820/recimundo/8.(3).julio.2024.181-194

Palabras clave:

COVID-19, Efectos secundarios, Pandemia, Revisión sistemática, Sistema inmune, Vacunas

Resumen

El estudio los efectos de las vacunas contra el COVID-19 en el sistema inmunitario" evalúa cómo las diferentes vacunas impactan el sistema inmunológico, centrándose en los efectos específicos en la respuesta inmunitaria. Las bases de datos buscadas incluyeron PubMed, Scopus y C. La estrategia de búsqueda se basó en términos clave relacionados con "vacunas COVID-19" y "respuesta inmunitaria", utilizando filtros para limitar la búsqueda a artículos publicados en inglés y español entre 2020 y 2024. Se seleccionaron estudios clínicos y observacionales sobre la respuesta inmune a las vacunas COVID-19 a través de un proceso riguroso. Se encontró que las vacunas mRNA induce una respuesta inmune más efectiva que las basadas en vectores virales, manteniéndose durante al menos seis meses postvacunación. Se observó un aumento significativo en los niveles de anticuerpos tras la segunda dosis. Aunque las vacunas son efectivas para generar una respuesta inmune, se identificaron limitaciones como la heterogeneidad entre estudios y la falta de datos a largo plazo. Se discutieron las implicaciones clínicas, recomendando monitorear la efectividad frente a nuevas variantes. Se sugiere realizar estudios longitudinales para evaluar los efectos a largo plazo de las vacunas en el sistema inmunitario. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ninoska Alexandra Ruilova Alvarado, Investigadora Independiente

Magíster en Seguridad y Salud Ocupacional; Magíster en Gestión Hospitalaria y Nuevas Tecnologías; Médica; Investigadora Independiente; Guayaquil, Ecuador

Pamela Elizabeth Rosado Mendoza, Investigadora Independiente

Licenciada en Enfermería; Investigadora Independiente; Guayaquil, Ecuador

Mariana Narcisa Borja Aguilar, Pontificia Universidad Católica del Ecuador

Licenciada en Enfermería; Pontificia Universidad Católica del Ecuador; Quito, Ecuador

Dakmar Doménica Molina Maldonado, Investigadora Independiente

Médica; Investigadora Independiente; Guayaquil, Ecuador

Citas

Bonsall. M, Chris, Huntingford., Thomas, Rawson. (2024). 4. Optimal approaches for COVID-19 control: the use of vaccines and lockdowns across societal groups. Frontiers in epidemiology, doi: 10.3389/fepid.2024.1308974

Brightwell, Sibanda., Budi, Haryanto. (2023). 3. Assessing the Impact of COVID-19 Vaccination Programs on the Reduction of COVID-19 Cases: A Systematic Literature Review. Annals of global health, doi: 10.5334/aogh.4484

Cai, C., Gao, Y., Adamo, S., Rivera-Ballesteros, O., Hansson, L., Österborg, A., Bergman, P., Sandberg, J. K., Ljunggren, H. G., Björkström, N. K., Strålin, K., Llewellyn-Lacey, S., Price, D. A., Qin, C., Grifoni, A., Weiskopf, D., Wherry, E. J., Sette, A., Aleman, S., & Buggert, M. (2023). SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Science immunology, 8(90), eadh0687. https://doi.org/10.1126/sciimmunol.adh0687

Cao., Junfeng, Jiang., Min, Liu., Yaping, Dai., Tianzhi, Chang., Tuo, Ji., Fang, Gong. (2023). 4. Longitudinal evaluation of innate immune responses to three doses of CoronaVac vaccine. Frontiers in Immunology, doi: 10.3389/fimmu.2023.1277831

Chang-Rabley., Menno, C., van, Zelm., Emily, Ricotta., Emily, S.J., Edwards. (2024). 6. An Overview of the Immune Response to COVID-19 Vaccination and Strategies to Boost SARS-CoV-2 Immunity in People with Inborn Errors of Immunity. doi: 10.20944/preprints202405.0661.v1

Cheng., Rong, Li., Xin, Luo., Jing-Yu, Chen., Zhong-Ping, Bai., Pin, Zhao., Zhi-Ying, Weng., Gao, Song. (2023). 4. Immunogenicity and safety of adjuvant-associated COVID-19 vaccines: A systematic review and meta-analysis of randomized controlled trials. Heliyon, doi: 10.1016/j.heliyon.2023.e22858

Connor, B, Grady., Bornali, Bhattacharjee., Julio, Silva., Jillian, R., Jaycox., Lik, Wee, Lee., V., Monteiro., Mitsuaki, Sawano., Daisy, Massey., Cesar, Caraballo., Jeff, R, Gehlhausen., Alexandra, Tabachnikova., Tianyang, Mao., Carolina, Lucas., Mario, A., Peña-6, Hernandez., Lan, Xu., Tiffany, J., Tzeng., Takehiro, Takahashi., Jeph, Herrin., Diana, Berrent, Güthe., Athena, Akrami., Gina, S., Assaf., Hannah, Davis., Karen, Harris., Lisa, McCorkell., Wade, L., Schulz., Daniel, Grffin., H., Wei., Aaron, M., Ring., Leying, Guan., Charles, Dela, Cruz., Akiko, Iwasaki., Harlan, M., Krumholz. (2024). 8. Impact of COVID-19 vaccination on symptoms and immune phenotypes in vaccine-naIÌ?ve individuals with Long COVID. medRxiv, doi: 10.1101/2024.01.11.24300929

Dovgan., Y, S., Drapkina., Nataliya, V., Dolgushina., I., Menzhinskaya., E, V, Inviyaeva., Valentina, V., Vtorushina., Lyubov, V., Krechetova., Gennady, T., Sukhikh. (2022). . Effect of COVID-19 vaccination on the immune status and autoantibody profile in women of reproductive age. ??????????? ???????????, doi: 10.15789/1563-0625-eoc-2515

Drury R., Susana, Camara., Irina, Chelysheva., S, Bibi., Katherine, Sanders., Salle, Felle., K., Emary., Daniel, Phillips., Merryn, Voysey., Daniela, M, Ferreira., P., Klenerman., Sarah, C., Gilbert., Teresa, Lambe., Andrew, J., Pollard., Daniel, O'Connor. (2024). 7. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. Nature Communications, doi: 10.1038/s41467-024-47463-6

Gerlach. J, Abdul, Mannan, Baig. (2023). Effects of COVID-19 and vaccination on the human immune system: cases of lymphopenia and autoimmunity. Future Virology, doi: 10.2217/fvl-2022-0218

Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre J-D, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID?19 vaccines. Cochrane Database of Systematic Reviews 2022, Issue 12. Art. No.: CD015477. DOI: 10.1002/14651858.CD015477. Accedida el 16 de noviembre de 2024.

Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., ... & Beigel, J. H. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine, 383(20), 1920-1931. https://doi.org/10.1056/NEJMoa2022483

Liakou, A I., A. Tsantes, Routsi, E Agiasofitou, M Kalamata, E Bompou, Konstantina A. Tsante, Soultana Vladeni, Eleni Chatzidimitriou, Ourania Kotsafti, and et al. (2024). Could Vaccination against COVID-19 Trigger Immune-Mediated Inflammatory Diseases? Journal of Clinical Medicine 13, no. 16: 4617. https://doi.org/10.3390/jcm13164617. PubMed

Liu, M., Zhao, T., Mu, Q., Zhang, R., Liu, C., Xu, F., Liang, L., Zhao, L., Zhao, S., Cai, X., Wang, M., Huang, N., Feng, T., Lei, S., Yang, G., & Cui, F. (2023). Immune-Boosting Effect of the COVID-19 Vaccine: Real-World Bidirectional Cohort Study. JMIR public health and surveillance, 9,. https://doi.org/10.2196/47272

Luca, M., Zaeck., Ngoc, H., Tan., Wim, J., R., Rietdijk., D., Geers., Roos, S, G, Sablerolles., Susanne, Bogers., L., V., Dijk., L., Gommers., L., P., V., Leeuwen., Sharona, Rugebregt., Abraham, Goorhuis., Douwe, F., Postma., Leo, G., Visser., Virgil, A., S., H., Dalm., Melvin, Lafeber., Neeltje, A., Kootstra., Anke, Huckriede., Bart, L., Haagmans., D., Baarle., Marion, Koopmans., P., Kuy., Corine, H., GeurtsvanKessel., R., D., Vries., -., S., R., Group. (2023). 10. Distinct COVID-19 vaccine combinations result in divergent immune responses. medRxiv, doi: 10.1101/2023.08.25.23294606

McMahan, K., Wegmann, F., Aid, M., Sciacca, M., Liu, J., Hachmann, N. P., Miller, J., Jacob-Dolan, C., Powers, O., Hope, D., Wu, C., Pereira, J., Murdza, T., Mazurek, C. R., Hoyt, A., Boon, A. C. M., Davis-Gardner, M., Suthar, M. S., Martinot, A. J., Boursiquot, M., … Barouch, D. H. (2024). Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature, 626(7998), 385–391. https://doi.org/10.1038/s41586-023-06951-3

Mitsikostas, D. D., Caronna, E., De Tommaso, M., Deligianni, C. I., Ekizoglu, E., Bolay, H., Göbel, C. H., Kristoffersen, E. S., Lampl, C., Moro, E., Pozo-Rosich, P., Sellner, J., Terwindt, G., & Irimia-Sieira, P. (2024). Headaches and facial pain attributed to SARS-CoV-2 infection and vaccination: a systematic review. European journal of neurology, 31(6), e16251. https://doi.org/10.1111/ene.16251 PubMed

National Institutes of Health. (2022). COVID-19 immune response improves for months after vaccination. https://www.nih.gov

Oxford Vaccine Group. (2024). Ground-breaking study reveals how COVID-19 vaccines prevent severe disease. University of Oxford. https://www.ox.ac.uk

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577

Quadeer, A. A., Ahmed, S. F., & McKay, M. R. (2021). Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell reports. Medicine, 2(6), 100312. https://doi.org/10.1016/j.xcrm.2021.100312

Ravera, Francesco., Dameri, Martina., Lombardo, Isabella., Stabile, Mario., Fallani, Neri., Scarsi, Camilla., Cigolini, Benedetta., Gentilcore, Giusy., Domnich, Alexander., Zullo, Lodovica., Cella, Eugenia., Francia, Giulia., Montanari, Eugenia., Orsi, Andrea., Bellodi, Andrea., Ferrando, Fabio., Rinchai, Darawan., Ballerini, Filippo., Bruzzone, Bianca., Chaussabel, Damien., Grivel, Jean-Charles., Genova, Carlo., Lemoli, Roberto., Bedognetti, Davide., Ballestrero, Alberto., Ferrando, Lorenzo., Zoppoli, Gabriele. (2024). 9. Biological modifications of the immune response to COVID-19 vaccine in patients treated with anti-CD20 agents and immune-checkpoint inhibitors. bioRxiv, doi: 10.1101/2024.03.05.583494

Ren., Qian, Gao., Xianchao, Zhou., Lei, Chen., Wei, Guo., Feng, Kong., Jerry, Hu., Tao, Huang., Yu-Dong, Cai. (2024). 2. Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach. Vaccine, doi: 10.1016/j.vaccine.2024.126253

Rydyznski Moderbacher, C., Ramirez, S. I., Dan, J. M., Grifoni, A., Hastie, K. M., Weiskopf, D., ... & Crotty, S. (2021). Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 183(4), 996-1012.e19. https://doi.org/10.1016/j.cell.2020.09.038

Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., ... & Van Hoof, J. (2021). Interim results of a phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. New England Journal of Medicine, 384(19), 1824-1835. https://doi.org/10.1056/NEJMoa2034201

Samia, T., Al?Shouli. (2024). 6. Immune Responses to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines: Updated Insights. Annals of Pakistan Institute of Medical Sciences, doi: 10.48036/apims.v20i1.1024

Shima, Hossaini., Fariba, Keramat., Zahra, Cheraghi., Bushra, Zareie., Amin, Doosti-Irani. (2023). 5. Comparing the Efficacy and Adverse Events of Available COVID-19 Vaccines Through Randomized Controlled Trials: Updated Systematic Review and Network Meta-analysis. Journal of research in health sciences, doi: 10.34172/jrhs.2023.128

Troncoso-Bravo., Mario, A., Ramírez., Ricardo, A., Loaiza., Carolina, Román-Cárdenas., Georgios, Papazisis., Daniel, Garrido., Pablo, A., González., Susan, M., Bueno., Alexis, M., Kalergis. (2024). 1. Advancement in the development of mRNA-based vaccines for respiratory viruses.. doi: 10.1111/imm.13844

Xu, G., Qi, F., Li, H., Yang, Q., Wang, H., Wang, X., Liu, X., Zhao, J., Liao, X., Liu, Y., Liu, L., Zhang, S., & Zhang, Z. (2020). The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell discovery, 6, 73. https://doi.org/10.1038/s41421-020-00225-2

Yang D., Jinhui, Tian., Chunping, Shen., Liqiang, Qin. (2024). 1. An overview and single-arm meta-analysis of immune-mediated adverse events following COVID-19 vaccination. Frontiers in Pharmacology, doi: 10.3389/fphar.2024.1308768

Yella, V. T., Pareek, S., Meena, B., Sasanka, K. S. B. S. K., Thangaraju, P., & T Y, S. S. (2024). A Systematic Review of the COVID Vaccine's Impact on the Nervous System. Current drug safety, 10.2174/0115748863273931231121072231. Advance online publication. https://doi.org/10.2174/0115748863273931231121072231 PubMed

Yu. s, Shijun, Chen., Jiang, Zhu., Jieming, Qu. (2023). The roles of innate and adaptive immunity in inactivated viral vaccination?mediated protection against COVID?19. Clinical and translational medicine, doi: 10.1002/ctm2.1530

Zhang, Y., Zeng, G., Pan, H., Li, C., Kan, B., Hu, Y., ... & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181-192. https://doi.org/10.1016/S1473-3099(20)30843-4

Descargas

Publicado

2024-11-18

Cómo citar

Ruilova Alvarado, N. A. ., Rosado Mendoza, P. E. ., Borja Aguilar, M. N. ., & Molina Maldonado, D. D. . (2024). Efectos de las vacunas contra el COVID-19 en el sistema humanitario. Una revisión sistemática. RECIMUNDO, 8(3), 181–194. https://doi.org/10.26820/recimundo/8.(3).julio.2024.181-194

Número

Sección

Artículos de Investigación

Artículos más leídos del mismo autor/a