Efectos de las vacunas contra el COVID-19 en el sistema humanitario. Una revisión sistemática
DOI:
https://doi.org/10.26820/recimundo/8.(3).julio.2024.181-194Palabras clave:
COVID-19, Efectos secundarios, Pandemia, Revisión sistemática, Sistema inmune, VacunasResumen
El estudio los efectos de las vacunas contra el COVID-19 en el sistema inmunitario" evalúa cómo las diferentes vacunas impactan el sistema inmunológico, centrándose en los efectos específicos en la respuesta inmunitaria. Las bases de datos buscadas incluyeron PubMed, Scopus y C. La estrategia de búsqueda se basó en términos clave relacionados con "vacunas COVID-19" y "respuesta inmunitaria", utilizando filtros para limitar la búsqueda a artículos publicados en inglés y español entre 2020 y 2024. Se seleccionaron estudios clínicos y observacionales sobre la respuesta inmune a las vacunas COVID-19 a través de un proceso riguroso. Se encontró que las vacunas mRNA induce una respuesta inmune más efectiva que las basadas en vectores virales, manteniéndose durante al menos seis meses postvacunación. Se observó un aumento significativo en los niveles de anticuerpos tras la segunda dosis. Aunque las vacunas son efectivas para generar una respuesta inmune, se identificaron limitaciones como la heterogeneidad entre estudios y la falta de datos a largo plazo. Se discutieron las implicaciones clínicas, recomendando monitorear la efectividad frente a nuevas variantes. Se sugiere realizar estudios longitudinales para evaluar los efectos a largo plazo de las vacunas en el sistema inmunitario.Descargas
Citas
Bonsall. M, Chris, Huntingford., Thomas, Rawson. (2024). 4. Optimal approaches for COVID-19 control: the use of vaccines and lockdowns across societal groups. Frontiers in epidemiology, doi: 10.3389/fepid.2024.1308974
Brightwell, Sibanda., Budi, Haryanto. (2023). 3. Assessing the Impact of COVID-19 Vaccination Programs on the Reduction of COVID-19 Cases: A Systematic Literature Review. Annals of global health, doi: 10.5334/aogh.4484
Cai, C., Gao, Y., Adamo, S., Rivera-Ballesteros, O., Hansson, L., Österborg, A., Bergman, P., Sandberg, J. K., Ljunggren, H. G., Björkström, N. K., Strålin, K., Llewellyn-Lacey, S., Price, D. A., Qin, C., Grifoni, A., Weiskopf, D., Wherry, E. J., Sette, A., Aleman, S., & Buggert, M. (2023). SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Science immunology, 8(90), eadh0687. https://doi.org/10.1126/sciimmunol.adh0687
Cao., Junfeng, Jiang., Min, Liu., Yaping, Dai., Tianzhi, Chang., Tuo, Ji., Fang, Gong. (2023). 4. Longitudinal evaluation of innate immune responses to three doses of CoronaVac vaccine. Frontiers in Immunology, doi: 10.3389/fimmu.2023.1277831
Chang-Rabley., Menno, C., van, Zelm., Emily, Ricotta., Emily, S.J., Edwards. (2024). 6. An Overview of the Immune Response to COVID-19 Vaccination and Strategies to Boost SARS-CoV-2 Immunity in People with Inborn Errors of Immunity. doi: 10.20944/preprints202405.0661.v1
Cheng., Rong, Li., Xin, Luo., Jing-Yu, Chen., Zhong-Ping, Bai., Pin, Zhao., Zhi-Ying, Weng., Gao, Song. (2023). 4. Immunogenicity and safety of adjuvant-associated COVID-19 vaccines: A systematic review and meta-analysis of randomized controlled trials. Heliyon, doi: 10.1016/j.heliyon.2023.e22858
Connor, B, Grady., Bornali, Bhattacharjee., Julio, Silva., Jillian, R., Jaycox., Lik, Wee, Lee., V., Monteiro., Mitsuaki, Sawano., Daisy, Massey., Cesar, Caraballo., Jeff, R, Gehlhausen., Alexandra, Tabachnikova., Tianyang, Mao., Carolina, Lucas., Mario, A., Peña-6, Hernandez., Lan, Xu., Tiffany, J., Tzeng., Takehiro, Takahashi., Jeph, Herrin., Diana, Berrent, Güthe., Athena, Akrami., Gina, S., Assaf., Hannah, Davis., Karen, Harris., Lisa, McCorkell., Wade, L., Schulz., Daniel, Grffin., H., Wei., Aaron, M., Ring., Leying, Guan., Charles, Dela, Cruz., Akiko, Iwasaki., Harlan, M., Krumholz. (2024). 8. Impact of COVID-19 vaccination on symptoms and immune phenotypes in vaccine-naIÌ?ve individuals with Long COVID. medRxiv, doi: 10.1101/2024.01.11.24300929
Dovgan., Y, S., Drapkina., Nataliya, V., Dolgushina., I., Menzhinskaya., E, V, Inviyaeva., Valentina, V., Vtorushina., Lyubov, V., Krechetova., Gennady, T., Sukhikh. (2022). . Effect of COVID-19 vaccination on the immune status and autoantibody profile in women of reproductive age. ??????????? ???????????, doi: 10.15789/1563-0625-eoc-2515
Drury R., Susana, Camara., Irina, Chelysheva., S, Bibi., Katherine, Sanders., Salle, Felle., K., Emary., Daniel, Phillips., Merryn, Voysey., Daniela, M, Ferreira., P., Klenerman., Sarah, C., Gilbert., Teresa, Lambe., Andrew, J., Pollard., Daniel, O'Connor. (2024). 7. Multi-omics analysis reveals COVID-19 vaccine induced attenuation of inflammatory responses during breakthrough disease. Nature Communications, doi: 10.1038/s41467-024-47463-6
Gerlach. J, Abdul, Mannan, Baig. (2023). Effects of COVID-19 and vaccination on the human immune system: cases of lymphopenia and autoimmunity. Future Virology, doi: 10.2217/fvl-2022-0218
Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre J-D, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID?19 vaccines. Cochrane Database of Systematic Reviews 2022, Issue 12. Art. No.: CD015477. DOI: 10.1002/14651858.CD015477. Accedida el 16 de noviembre de 2024.
Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., ... & Beigel, J. H. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine, 383(20), 1920-1931. https://doi.org/10.1056/NEJMoa2022483
Liakou, A I., A. Tsantes, Routsi, E Agiasofitou, M Kalamata, E Bompou, Konstantina A. Tsante, Soultana Vladeni, Eleni Chatzidimitriou, Ourania Kotsafti, and et al. (2024). Could Vaccination against COVID-19 Trigger Immune-Mediated Inflammatory Diseases? Journal of Clinical Medicine 13, no. 16: 4617. https://doi.org/10.3390/jcm13164617. PubMed
Liu, M., Zhao, T., Mu, Q., Zhang, R., Liu, C., Xu, F., Liang, L., Zhao, L., Zhao, S., Cai, X., Wang, M., Huang, N., Feng, T., Lei, S., Yang, G., & Cui, F. (2023). Immune-Boosting Effect of the COVID-19 Vaccine: Real-World Bidirectional Cohort Study. JMIR public health and surveillance, 9,. https://doi.org/10.2196/47272
Luca, M., Zaeck., Ngoc, H., Tan., Wim, J., R., Rietdijk., D., Geers., Roos, S, G, Sablerolles., Susanne, Bogers., L., V., Dijk., L., Gommers., L., P., V., Leeuwen., Sharona, Rugebregt., Abraham, Goorhuis., Douwe, F., Postma., Leo, G., Visser., Virgil, A., S., H., Dalm., Melvin, Lafeber., Neeltje, A., Kootstra., Anke, Huckriede., Bart, L., Haagmans., D., Baarle., Marion, Koopmans., P., Kuy., Corine, H., GeurtsvanKessel., R., D., Vries., -., S., R., Group. (2023). 10. Distinct COVID-19 vaccine combinations result in divergent immune responses. medRxiv, doi: 10.1101/2023.08.25.23294606
McMahan, K., Wegmann, F., Aid, M., Sciacca, M., Liu, J., Hachmann, N. P., Miller, J., Jacob-Dolan, C., Powers, O., Hope, D., Wu, C., Pereira, J., Murdza, T., Mazurek, C. R., Hoyt, A., Boon, A. C. M., Davis-Gardner, M., Suthar, M. S., Martinot, A. J., Boursiquot, M., … Barouch, D. H. (2024). Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature, 626(7998), 385–391. https://doi.org/10.1038/s41586-023-06951-3
Mitsikostas, D. D., Caronna, E., De Tommaso, M., Deligianni, C. I., Ekizoglu, E., Bolay, H., Göbel, C. H., Kristoffersen, E. S., Lampl, C., Moro, E., Pozo-Rosich, P., Sellner, J., Terwindt, G., & Irimia-Sieira, P. (2024). Headaches and facial pain attributed to SARS-CoV-2 infection and vaccination: a systematic review. European journal of neurology, 31(6), e16251. https://doi.org/10.1111/ene.16251 PubMed
National Institutes of Health. (2022). COVID-19 immune response improves for months after vaccination. https://www.nih.gov
Oxford Vaccine Group. (2024). Ground-breaking study reveals how COVID-19 vaccines prevent severe disease. University of Oxford. https://www.ox.ac.uk
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., ... & Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577
Quadeer, A. A., Ahmed, S. F., & McKay, M. R. (2021). Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell reports. Medicine, 2(6), 100312. https://doi.org/10.1016/j.xcrm.2021.100312
Ravera, Francesco., Dameri, Martina., Lombardo, Isabella., Stabile, Mario., Fallani, Neri., Scarsi, Camilla., Cigolini, Benedetta., Gentilcore, Giusy., Domnich, Alexander., Zullo, Lodovica., Cella, Eugenia., Francia, Giulia., Montanari, Eugenia., Orsi, Andrea., Bellodi, Andrea., Ferrando, Fabio., Rinchai, Darawan., Ballerini, Filippo., Bruzzone, Bianca., Chaussabel, Damien., Grivel, Jean-Charles., Genova, Carlo., Lemoli, Roberto., Bedognetti, Davide., Ballestrero, Alberto., Ferrando, Lorenzo., Zoppoli, Gabriele. (2024). 9. Biological modifications of the immune response to COVID-19 vaccine in patients treated with anti-CD20 agents and immune-checkpoint inhibitors. bioRxiv, doi: 10.1101/2024.03.05.583494
Ren., Qian, Gao., Xianchao, Zhou., Lei, Chen., Wei, Guo., Feng, Kong., Jerry, Hu., Tao, Huang., Yu-Dong, Cai. (2024). 2. Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach. Vaccine, doi: 10.1016/j.vaccine.2024.126253
Rydyznski Moderbacher, C., Ramirez, S. I., Dan, J. M., Grifoni, A., Hastie, K. M., Weiskopf, D., ... & Crotty, S. (2021). Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 183(4), 996-1012.e19. https://doi.org/10.1016/j.cell.2020.09.038
Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C., de Groot, A. M., ... & Van Hoof, J. (2021). Interim results of a phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. New England Journal of Medicine, 384(19), 1824-1835. https://doi.org/10.1056/NEJMoa2034201
Samia, T., Al?Shouli. (2024). 6. Immune Responses to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines: Updated Insights. Annals of Pakistan Institute of Medical Sciences, doi: 10.48036/apims.v20i1.1024
Shima, Hossaini., Fariba, Keramat., Zahra, Cheraghi., Bushra, Zareie., Amin, Doosti-Irani. (2023). 5. Comparing the Efficacy and Adverse Events of Available COVID-19 Vaccines Through Randomized Controlled Trials: Updated Systematic Review and Network Meta-analysis. Journal of research in health sciences, doi: 10.34172/jrhs.2023.128
Troncoso-Bravo., Mario, A., Ramírez., Ricardo, A., Loaiza., Carolina, Román-Cárdenas., Georgios, Papazisis., Daniel, Garrido., Pablo, A., González., Susan, M., Bueno., Alexis, M., Kalergis. (2024). 1. Advancement in the development of mRNA-based vaccines for respiratory viruses.. doi: 10.1111/imm.13844
Xu, G., Qi, F., Li, H., Yang, Q., Wang, H., Wang, X., Liu, X., Zhao, J., Liao, X., Liu, Y., Liu, L., Zhang, S., & Zhang, Z. (2020). The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell discovery, 6, 73. https://doi.org/10.1038/s41421-020-00225-2
Yang D., Jinhui, Tian., Chunping, Shen., Liqiang, Qin. (2024). 1. An overview and single-arm meta-analysis of immune-mediated adverse events following COVID-19 vaccination. Frontiers in Pharmacology, doi: 10.3389/fphar.2024.1308768
Yella, V. T., Pareek, S., Meena, B., Sasanka, K. S. B. S. K., Thangaraju, P., & T Y, S. S. (2024). A Systematic Review of the COVID Vaccine's Impact on the Nervous System. Current drug safety, 10.2174/0115748863273931231121072231. Advance online publication. https://doi.org/10.2174/0115748863273931231121072231 PubMed
Yu. s, Shijun, Chen., Jiang, Zhu., Jieming, Qu. (2023). The roles of innate and adaptive immunity in inactivated viral vaccination?mediated protection against COVID?19. Clinical and translational medicine, doi: 10.1002/ctm2.1530
Zhang, Y., Zeng, G., Pan, H., Li, C., Kan, B., Hu, Y., ... & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181-192. https://doi.org/10.1016/S1473-3099(20)30843-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Ninoska Alexandra Ruilova Alvarado, Pamela Elizabeth Rosado Mendoza, Mariana Narcisa Borja Aguilar, Dakmar Doménica Molina Maldonado
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.