Aplicaciones de la IA en el diagnóstico quirúrgico de enfermedades digestivas. Una revisión sistemática

Autores/as

DOI:

https://doi.org/10.26820/recimundo/9.(2).abril.2025.458-473

Palabras clave:

Inteligencia Artificial, Diagnóstico, Enfermedades Gastrointestinales, Cirugía, Revisión Sistemática

Resumen

Antecedentes/Objetivo: Las enfermedades digestivas representan una carga significativa para la salud global. El diagnóstico preciso y temprano es crucial para el manejo quirúrgico. La inteligencia artificial (IA) ofrece herramientas prometedoras para mejorar esta precisión. El objetivo de esta revisión sistemática es evaluar la evidencia actual sobre la aplicación de la IA en el diagnóstico quirúrgico de enfermedades digestivas. Métodos: Se realizaron búsquedas exhaustivas en PubMed, Scopus, Web of Science y Cochrane Library desde enero de 2010 hasta mayo de 2025. Se incluyeron estudios que evaluaron el uso de algoritmos de IA (intervención) en el diagnóstico de enfermedades digestivas en pacientes sometidos a o considerados para cirugía (población), comparando con métodos diagnósticos convencionales (comparadores) y reportando métricas de rendimiento diagnóstico (resultados). Se consideraron estudios observacionales y experimentales (diseño). La selección de estudios y la extracción de datos se realizaron de forma independiente por dos revisores, siguiendo un protocolo PRISMA. Resultados: Se incluyeron 25 estudios. Los hallazgos principales demuestran que la IA, particularmente las redes neuronales convolucionales y los modelos de aprendizaje profundo, exhibe un alto potencial para mejorar la precisión diagnóstica en patologías como el cáncer colorectal, el cáncer gástrico y la enfermedad inflamatoria intestinal, utilizando imágenes endoscópicas e histopatológicas. Las limitaciones clave incluyen la heterogeneidad metodológica y la falta de validación externa en muchos estudios. Conclusiones: La IA es una herramienta prometedora para optimizar el diagnóstico quirúrgico de enfermedades digestivas, ofreciendo mayor precisión y eficiencia. Se requieren estudios multicéntricos, con cohortes más grandes y validación externa, para trasladar estos hallazgos a la práctica clínica.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

William Eduardo Plúa Marcillo, Universidad de Guayaquil

Magíster en Gerencia y Administración de Salud; Especialista en Cirugía General; Magíster en Educación; Doctor en Ciencias de la Salud; Médico; Universidad de Guayaquil; Guayaquil, Ecuador

Verónica Antonella Vizueta Estrada, Investigadora Independiente

Médica; Investigadora Independiente; Guayaquil, Ecuador

Glenda Magali Vaca Coronel, Universidad de Guayaquil

Especialista en Pediatría; Diploma Superior en Diseño Curricular por Competencias; Diplomado en Docencia Superior; Doctor en Medicina y Cirugía; Universidad de Guayaquil; Guayaquil, Ecuador

Marvi Alexander Viteri Ruiz, Pontificia Universidad Católica del Ecuador

Especialista en Salud y Seguridad Ocupacional con Mención en Salud Ocupacional; Licenciado en Enfermería; Pontificia Universidad Católica del Ecuador Sede Esmeraldas; Esmeraldas, Ecuador

Citas

Abadir, A. P., Ali, M. F., Karnes, W., & Samarasena, J. B. (2020). Artificial Intelligence in Gastrointestinal Endoscopy. Clinical endoscopy, 53(2), 132–141. https://doi.org/10.5946/ce.2020.038

Baquerizo-Burgos, J., Egas-Izquierdo, M., Cunto, D., & colaboradores. (2023). La era de la endoscopia inteligente: cómo la inteligencia artificial potencia la endoscopia digestiva. Acta Gastroenterológica Latinoamericana, 53(3), 211–225. https://doi.org/10.52787/agl.v53i3.339

Barua, I., Vinsard, D. G., Jodal, H. C., Løberg, M., Kalager, M., Holme, Ø., Misawa, M., Bretthauer, M., & Mori, Y. (2021). Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis. Endoscopy, 53(3), 277–284. https://doi.org/10.1055/a-1201-7165

Bramer, W. M., de Jonge, G. B., & Rethlefsen, M. L. (2018). A systematic approach to searching for relevant studies for a systematic review. Journal of the Medical Library Association, 106(4), 513–521.

Calderaro, J., & Kather, J. N. (2021). Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut, 70(6), 1183–1193. https://doi.org/10.1136/gutjnl-2020-321254

Chan, H. P., Hadjiiski, L., Samala, R. K. (2022). Computer-aided diagnosis in the era of deep learning. Medical Physics, 49(1), e1–e13. https://doi.org/10.1002/mp.15364

Chevalier, O., Dubey, G., Benkabbou, A., Majbar, M. A., & Souadka, A. (2025). Comprehensive overview of artificial intelligence in surgery: a systematic review and perspectives. Pflügers Archiv-European Journal of Physiology, 1-10.

Dhali, A., Kipkorir, V., Maity, R., Srichawla, B. S., Biswas, J., Rathna, R. B., ... & Dhali, G. K. (2025). Artificial intelligence–assisted capsule endoscopy versus conventional capsule endoscopy for detection of small bowel lesions: a systematic review and meta?analysis. Journal of Gastroenterology and Hepatology.

Filipow, N., Main, E., Sebire, N., Booth, J., Taylor, A. M., Davies, G. & Stanojevic, S. (2022). Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review. BMJ open respiratory research, 9. https://doi.org/10.1136/bmjresp-2021-001165

GBD 2019 Diseases and Injuries Collaborators. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis. The Lancet, 396(10258), 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

Hirasawa, T., Aoyama, K., Tanimoto, T., et al. (2018). Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastrointestinal Endoscopy, 89(3), 607–613. https://doi.org/10.1016/j.gie.2018.07.022

Hoogenboom, S. A., Bagci, U., & Wallace, M. B. (2019). Artificial intelligence in gastroenterology: The current state of play and the potential. How will it affect our practice and when? Techniques in Gastrointestinal Endoscopy, 22(2), 42–47. https://doi.org/10.1016/j.tgie.2019.06.003

Kather, J. N., & Calderaro, J. (2020). Development of AI-based pathology biomarkers in gastrointestinal and liver cancer. Nature Reviews Gastroenterology & Hepatology, 17(10), 591–592. https://doi.org/10.1038/s41575-020-0330-z

Kröner, P. T., Engels, M. M., Glicksberg, B. S., Johnson, K. W., Mzaik, O., van Hooft, J. E., Wallace, M. B., El-Serag, H. B., & Krittanawong, C. (2021). Artificial intelligence in gastroenterology: A state-of-the-art review. World journal of gastroenterology, 27(40), 6794–6824. https://doi.org/10.3748/wjg.v27.i40.6794

Lambin, P., Leijenaar, R. T. H., Deist, T. M., et al. (2021). Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 18(12), 749–762. https://doi.org/10.1038/s41571-021-00549-9

Le Berre, C., Sandborn, W. J., Aridhi, S., Devignes, M. D., Fournier, L., Smaïl-Tabbone, M., Danese, S., & Peyrin-Biroulet, L. (2020). Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology, 158(1), 76–94.e2. https://doi.org/10.1053/j.gastro.2019.08.058

Lewis, J. H., Pathan, S., Kumar, P., & Dias, C. C. (2024). AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques. IEEE Access, 1. https://doi.org/10.1109/access.2024.3483432

Mansour N. M. (2023). Artificial Intelligence in Colonoscopy. Current gastroenterology reports, 25(6), 122–129. https://doi.org/10.1007/s11894-023-00872-x

Minoda, Y., Ihara, E., Fujimori, N., Nagatomo, S., Esaki, M., Hata, Y., et al. (2022). Efficacy of ultrasound endoscopy with artificial intelligence for the differential diagnosis of non-gastric gastrointestinal stromal tumors. Scientific Reports, 12(1) https://www.nature.com/articles/s41598-022-20863-8

Minoda, Y., Ihara, E., Komori, K., Ogino, H., Otsuka, Y., Chinen, T., Tsuda, Y., Ando, K., Yamamoto, H., & Ogawa, Y. (2020). Efficacy of endoscopic ultrasound with artificial intelligence for the diagnosis of gastrointestinal stromal tumors. Journal of gastroenterology, 55(12), 1119–1126. https://doi.org/10.1007/s00535-020-01725-4

Minoda, Y., Ihara, E., Ogino, H., Komori, K., Otsuka, Y., Ikeda, H., ... & Ogawa, Y. (2020). The efficacy and safety of a promising single-channel endoscopic closure technique for endoscopic treatment-related artificial ulcers: A pilot study. Gastrointestinal Tumors, 7(1-2), 21-29.

Mori, Y., Berzin, T. M., & Kudo, S. E. (2019). Artificial intelligence for early gastric cancer: early promhttps://doi.org/10.1016/j.gie.2018.12.019

Mori, Y., Kudo, S. E., East, J. E., Rastogi, A., Bretthauer, M., Misawa, M., Sekiguchi, M., Matsuda, T., Saito, Y., Ikematsu, H., Hotta, K., Ohtsuka, K., Kudo, T., & Mori, K. (2020). Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis: an add-on analysis of a clinical trial (with video). Gastrointestinal endoscopy, 92(4), 905–911.e1. https://doi.org/10.1016/j.gie.2020.03.3759

Ouyang, Y., & Hu, Y. (2023). Research trends on artificial intelligence and endoscopy in digestive diseases: A bibliometric analysis from 1990 to 2022. World Journal of Gastroenterology, 29(22), 3561–3573. https://doi.org/10.3748/wjg.v29.i22.3561

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, C. J., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Pecere, S., Milluzzo, S. M., Esposito, G., Dilaghi, E., Telese, A., & Eusebi, L. H. (2021). Applications of Artificial Intelligence for the Diagnosis of Gastrointestinal Diseases. Diagnostics (Basel, Switzerland), 11(9), 1575. https://doi.org/10.3390/diagnostics11091575

Shichijo, S., Nomura, S., Aoyama, K., Nishikawa, Y., Miura, M., Shinagawa, T., Takiyama, H., Tanimoto, T., Ishihara, S., Matsuo, K., & Tada, T. (2017). Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images. EBioMedicine, 25, 106–111. https://doi.org/10.1016/j.ebiom.2017.10.014

Shukla, A., Chaudhary, R., & Nayyar, N. (2024). Rol de la inteligencia artificial en la cirugía gastrointestinal. Artificial Intelligence in Cancer, 5(2), 97317. https://doi.org/10.35713/aic.v5.i2.97317

Sterne, J. A. C., Savovi?, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Cates, I. J., Cumpston, A. J., Davies, P. S., Higgins, J. P. T., & Churchill, R. A. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, l4898.

Visaggi, P., de Bortoli, N., Barberio, B., Savarino, V., Oleas, R., Rosi, E. M., Marchi, S., Ribolsi, M., & Savarino, E. (2022). Artificial intelligence in the diagnosis of upper gastrointestinal diseases. Journal of Clinical Gastroenterology, 56(1), 23–35. https://doi.org/10.1097/MCG.0000000000001629

Wang, P., Berzin, T. M., Glissen Brown, J. R., Bharadwaj, S., Becq, A., Xiao, X., Liu, P., Li, L., Song, Y., Zhang, D., Li, Y., Xu, G., Tu, M., & Liu, X. (2019). Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut, 68(10), 1813–1819. https://doi.org/10.1136/gutjnl-2018-317500

Wang, P., Liu, X., Berzin, T. M., Glissen Brown, J. R., Liu, P., Zhou, C., Lei, L., Li, L., Guo, Z., Lei, S., Xiong, F., Wang, H., Song, Y., Pan, Y., & Zhou, G. (2020). Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. The lancet. Gastroenterology & hepatology, 5(4), 343–351. https://doi.org/10.1016/S2468-1253(19)30411-X

Whiting, P. F., Rutjes, A. W. S., Westwood, M. E., Mallett, S., Deeks, J. J., & Reitsma, J. B. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529–536.

Yangi, K., On, T. J., Xu, Y., Gholami, A. S., Hong, J., Reed, A. G., ... & Preul, M. C. (2025). Artificial intelligence integration in surgery through hand and instrument tracking: a systematic literature review. Frontiers in surgery, 12, 1528362.

Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-z

Zhu, Y., Wang, Q. C., Xu, M. D., Zhang, Z., Cheng, J., Zhong, Y. S., Zhang, Y. Q., Chen, W. F., Yao, L. Q., Zhou, P. H., & Li, Q. L. (2019). Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointestinal endoscopy, 89(4), 806–815.e1. https://doi.org/10.1016/j.gie.2018.11.011

Descargas

Publicado

2025-06-09

Cómo citar

Plúa Marcillo, W. E. ., Vizueta Estrada, V. A., Vaca Coronel, G. M., & Viteri Ruiz, M. A. . (2025). Aplicaciones de la IA en el diagnóstico quirúrgico de enfermedades digestivas. Una revisión sistemática. RECIMUNDO, 9(2), 458–473. https://doi.org/10.26820/recimundo/9.(2).abril.2025.458-473

Número

Sección

Artículos de Investigación

Artículos más leídos del mismo autor/a