
471
RECIMUNDO VOL. 9 N°2 (2025)
APLICACIONES DE LA IA EN EL DIAGNÓSTICO QUIRÚRGICO DE ENFERMEDADES DIGESTIVAS. UNA RE-
VISIÓN SISTEMÁTICA
Filipow, N., Main, E., Sebire, N., Booth, J., Taylor, A.
M., Davies, G. & Stanojevic, S. (2022). Implemen-
tation of prognostic machine learning algorithms
in paediatric chronic respiratory conditions: a sco-
ping review. BMJ open respiratory research, 9. ht-
tps://doi.org/10.1136/bmjresp-2021-001165
GBD 2019 Diseases and Injuries Collaborators.
(2020). Global burden of 369 diseases and inju-
ries in 204 countries and territories, 1990–2019:
A systematic analysis. The Lancet, 396(10258),
1204–1222. https://doi.org/10.1016/S0140-
6736(20)30925-9
Hirasawa, T., Aoyama, K., Tanimoto, T., et al. (2018).
Application of artificial intelligence using a convo-
lutional neural network for detecting gastric cancer
in endoscopic images. Gastrointestinal Endos-
copy, 89(3), 607–613. https://doi.org/10.1016/j.
gie.2018.07.022
Hoogenboom, S. A., Bagci, U., & Wallace, M. B.
(2019). Artificial intelligence in gastroenterology:
The current state of play and the potential. How
will it affect our practice and when? Techniques in
Gastrointestinal Endoscopy, 22(2), 42–47. https://
doi.org/10.1016/j.tgie.2019.06.003
Kather, J. N., & Calderaro, J. (2020). Development
of AI-based pathology biomarkers in gastrointes-
tinal and liver cancer. Nature Reviews Gastroente-
rology & Hepatology, 17(10), 591–592. https://doi.
org/10.1038/s41575-020-0330-z
Kröner, P. T., Engels, M. M., Glicksberg, B. S., John-
son, K. W., Mzaik, O., van Hooft, J. E., Wallace, M.
B., El-Serag, H. B., & Krittanawong, C. (2021). Ar-
tificial intelligence in gastroenterology: A state-of-
the-art review. World journal of gastroenterology,
27(40), 6794–6824. https://doi.org/10.3748/wjg.
v27.i40.6794
Lambin, P., Leijenaar, R. T. H., Deist, T. M., et al.
(2021). Radiomics: the bridge between medical
imaging and personalized medicine. Nature Re-
views Clinical Oncology, 18(12), 749–762. https://
doi.org/10.1038/s41571-021-00549-9
Le Berre, C., Sandborn, W. J., Aridhi, S., Devignes,
M. D., Fournier, L., Smaïl-Tabbone, M., Danese, S.,
& Peyrin-Biroulet, L. (2020). Application of artificial
intelligence to gastroenterology and hepatology.
Gastroenterology, 158(1), 76–94.e2. https://doi.or-
g/10.1053/j.gastro.2019.08.058
Lewis, J. H., Pathan, S., Kumar, P., & Dias, C. C.
(2024). AI in Endoscopic Gastrointestinal Diagno-
sis: A Systematic Review of Deep Learning and
Machine Learning Techniques. IEEE Access, 1.
https://doi.org/10.1109/access.2024.3483432
Mansour N. M. (2023). Artificial Intelligence in Colo-
noscopy. Current gastroenterology reports, 25(6),
122–129. https://doi.org/10.1007/s11894-023-
00872-x
Minoda, Y., Ihara, E., Fujimori, N., Nagatomo, S., Esa-
ki, M., Hata, Y., et al. (2022). Efficacy of ultrasound
endoscopy with artificial intelligence for the diffe-
rential diagnosis of non-gastric gastrointestinal
stromal tumors. Scientific Reports, 12(1) https://
www.nature.com/articles/s41598-022-20863-8
Minoda, Y., Ihara, E., Komori, K., Ogino, H., Otsuka,
Y., Chinen, T., Tsuda, Y., Ando, K., Yamamoto, H.,
& Ogawa, Y. (2020). Efficacy of endoscopic ultra-
sound with artificial intelligence for the diagno-
sis of gastrointestinal stromal tumors. Journal of
gastroenterology, 55(12), 1119–1126. https://doi.
org/10.1007/s00535-020-01725-4
Minoda, Y., Ihara, E., Ogino, H., Komori, K., Otsuka,
Y., Ikeda, H., ... & Ogawa, Y. (2020). The efficacy
and safety of a promising single-channel endosco-
pic closure technique for endoscopic treatment-re-
lated artificial ulcers: A pilot study. Gastrointestinal
Tumors, 7(1-2), 21-29.
Mori, Y., Berzin, T. M., & Kudo, S. E. (2019). Artificial
intelligence for early gastric cancer: early promht-
tps://doi.org/10.1016/j.gie.2018.12.019
Mori, Y., Kudo, S. E., East, J. E., Rastogi, A., Bret-
thauer, M., Misawa, M., Sekiguchi, M., Matsuda, T.,
Saito, Y., Ikematsu, H., Hotta, K., Ohtsuka, K., Kudo,
T., & Mori, K. (2020). Cost savings in colonoscopy
with artificial intelligence-aided polyp diagnosis:
an add-on analysis of a clinical trial (with video).
Gastrointestinal endoscopy, 92(4), 905–911.e1. ht-
tps://doi.org/10.1016/j.gie.2020.03.3759
Ouyang, Y., & Hu, Y. (2023). Research trends on ar-
tificial intelligence and endoscopy in digestive di-
seases: A bibliometric analysis from 1990 to 2022.
World Journal of Gastroenterology, 29(22), 3561–
3573. https://doi.org/10.3748/wjg.v29.i22.3561
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elma-
garmid, A. (2016). Rayyan—a web and mobile app
for systematic reviews. Systematic Reviews, 5(1),
210.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Bou-
tron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer,
L., Tetzlaff, C. J., Akl, E. A., Brennan, S. E., Chou,
R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A.,
Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E.,
McDonald, S., McGuinness, L. A., Stewart, L. A.,
Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P.,
& Moher, D. (2021). The PRISMA 2020 statement:
An updated guideline for reporting systematic re-
views. BMJ, 372, n71.