Diagnóstico en tiempo real durante cirugías
DOI:
https://doi.org/10.26820/recimundo/7.(1).enero.2023.498-506Keywords:
Diagnóstico, Cirugía, Sala de Operación, Paciente Quirúrgico, Diagnóstico por ImagenAbstract
Hoy en día existen nuevas modalidades y técnicas que permiten detectar anormalidades en los pacientes que son sometidos a cirugías. Esto sucede, cuando no se tiene claro el diagnóstico y es necesario realizar una evaluación profunda en quirófano. La imagen hiperespectral (HSI) es una nueva modalidad de imagen óptica, que actualmente es muy usada en el campo de la medicina. Permite un análisis bioquímico sin contacto y no destructivo de tejido vivo, a través de la combinación de una cámara fotográfica digital con una unidad espectrográfica que da como resultado, una imagen hibrida que proporciona información cuantitativa y cualitativa de la composición del tejido a nivel molecular sin contraste y que permite discriminar objetivamente entre diferentes tipos de tejido y entre tejido sano y patológico. Sin embargo, ha sido recientemente que la HSI es utilizada en las salas de operación, a pesar de haber sido utilizada en la medicina desde hace un par décadas. En este sentido, son varios los grupos de especialistas que emplean esta modalidad de imagen como una herramienta de orientación intraoperatoria dentro de diferentes disciplinas quirúrgicas lo cual ayuda a detectar un diagnostico en tiempo real.Downloads
References
Akbari, H., Kosugi, Y., & Kojima, K. (2010). Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging. IEEE Trans. Biomed. Eng, 2011–2017.
Barberio, M., Al-Taher, M., & Felli, E. (2021). Intraoperative ureter identification with a novel fluorescent catheter. Sci. Rep, 11.
Clancy, N., Jones, G., & Hein, L. (2020). Surgical spectral imaging. Med. Image Anal, 101699.
Collins, T., Maktabi, M., & Barberio, M. (2021). Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging. Diagnostic, 10-18.
Cucci, C., Delaney, J., & Picollo, M. (2016). Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc. Chem. Res, 2070–2079.
Degett, T., Andersen, H., & Gögenur, I. (2016). Indocyanine green fluorescence angiography for intraoperative assessment of gastroin- testinal anastomotic perfusion: A systematic review of clinical trials. Langenbeck’s Arch. Surg, 767–775.
Felli, E., Altaher, M., Collins, T., & Baiocchini, A. (2019). Hyperspectral evaluation of hepatic oxygenation in a model of total vs. arterial liver ischaemia. Sci. Rep, 37-45.
Ghamisi, P., Plaza, J., & Chen, Y. (2017). Advanced spectral classifiers for hyperspectral images: A review. IEEE Geosci. Remote. Sens. Mag, 8–32.
Halicek, M., Fabelo, H., & Ortega, S. (2019). In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible features of cancer. Cancers, 7-56.
Han, Z., Zhang, A., & Wang, X. (2016). In vivo use of hyperspectral imaging to develop a noncontact endoscopic diagnosis support system for malignant colorectal tumors. J. Biomed. Opt., 016001.
Jacques, S. (2013). Optical properties of biological tissues: A review. Phys. Med. Biol, R37.
Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: A review. J. Biomed. Opt, 010901.
Martinez, B., Leon, R., & Fabelo, H. (2019). Most relevant spectral bands identification for brain cancer detection using hyperspectral imaging. Sensors, 54-81.
Morse, B., Simpson, J., & Jones, Y. (2013). Determination of independent predictive factors for anastomotic leak: Analysis of 682 intestinal anastomoses. Am. J. Surg, 950–956.
Sarantopoulos, A., Beziere, N., & Ntziachristos, V. (2012). Optical and opto-acoustic interventional imaging. Ann. Biomed. Eng, 346–366. Recuperado el 11 de Abril de 2023, de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4182822/
Shapey, J., Nabavi, E., & Bradford, R. (2019). Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies. J. Biophotonics, 14-24.